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The raise and peel model is a stochastic model of a fluctuating interface separating a substrate covered with
clusters of matter of different sizes and a rarefied gas of tiles. The stationary state is obtained when adsorption
compensates the desorption of tiles. This model is generalized to an interface with defects �D�. The defects are
either adjacent or separated by a cluster. If a tile hits the end of a cluster with a defect nearby, the defect hops
at the other end of the cluster, changing its shape. If a tile hits two adjacent defects, the defects annihilate and
are replaced by a small cluster. There are no defects in the stationary state. This model can be seen as
describing the reaction D+D→0, in which the particles �defects� D hop at long distances, changing the
medium, and annihilate. Between the hops the medium also changes �tiles hit clusters, changing their shapes�.
Several properties of this model are presented and some exact results are obtained using the connection of our
model with a conformally invariant quantum chain.
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I. INTRODUCTION

The raise and peel model �1,2�, which is a stochastic
model of a fluctuating interface, is, to our knowledge, the
first example of a stochastic model that has the space-time
symmetry of conformal invariance. This implies that the dy-
namic critical exponent z=1 and certain scaling properties of
various correlation functions are known. This model was ex-
tended in order to take into account sources at the boundaries
�3–5�, keeping conformal invariance. In all these cases, the
stationary states have magic combinatorial properties.

In the present paper we describe another extension of the
raise and peel model keeping conformal invariance �see also
Appendixes A and B� by introducing defects on the inter-
face. These defects hop at long distances in a medium which
is changed by the hops. Between the hops the medium also
changes. Finally, when two defects touch, they can annihi-
late. The stationary state is the same one as in the original
raise and peel model with no defects.

The whole process can be seen as a reaction D+D→0,
where D is a defect, taking place in a disordered unquenched
medium.

In Sec. II we describe the model. Like the raise and peel
model �1�, the present model comes from considering the
action of a Hamiltonian expressed in terms of Temperley-
Lieb generators on a vector space that is a left ideal of the
Temperley-Lieb algebra. The ideal can be mapped on graphs
that constitute the configuration space of the model. We
briefly review in Appendix A the mathematical background
of the model and refer for details to Refs. �4,5�.

In Sec. III, using Monte Carlo simulations, we describe
the long-range hopping of defects and give the Lévy flight
probability distribution.

In Sec. IV, again using Monte Carlo simulations, starting
with a configuration that consists only of defects, we study
the variation in time t of their density for a lattice of size L.
We obtain the scaling function that gives the number of de-
fects in terms of t /L, and show how conformal invariance
gives some of its properties. In the thermodynamic limit the
density decreases in time as 1/ t, as is expected since in a
conformally invariant theory time and space are on equal
footing. In Sec. V we present our conclusions.

II. THE RAISE AND PEEL MODEL WITH DEFECTS

We consider an interface of a one-dimensional lattice with
L+1 sites. An interface is formed by attaching at each site a
non-negative integer height hi �i=0,1 , . . . ,L�. We take h0

=hL=0. If for two consecutive sites j and j+1 we have hj
=hj+1=0, on the link connecting the two sites we put an
arrow called a defect �see Fig. 1�. For the remaining sites, the
heights obey the restrict solid-on-solid �RSOS� rules:

hi+1 − hi = ± 1, hi � 0. �1�

A domain in which the RSOS rules are obeyed �hj =hl

=0,hk�0, j�k� l� is called a cluster. There are three clus-
ters and three defects in Fig. 1 �L=21�. There are � L

�L/2� �
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FIG. 1. One of the configurations for L=21 �22 sites�. There are
three defects �arrows on the links� and three clusters. Also shown
are five tiles �tilted squares� a–e belonging to the gas. When a tile
hits the surface, the effect is different in the five cases.
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possible configurations of the interface �we denote by �x� the
integer part of x�.

There is a simple bijection between the configurations of
interfaces and defects, where Fig. 1 is an example, and ballot
paths �4�. A ballot path is obtained if one follows the RSOS
rules �1�, takes hL=0, but leaves h0 free �0�hL�L�. This
fact was used in �5� to define another stochastic model than
the one described below. In the case L=4, the six possible
configurations are shown in Fig. 2. The configuration shown
in Fig. 2�b� has two defects and one cluster, while there are
no defects in Fig. 2�f�.

We consider the interface separating a film of tiles �clus-
ters with defects� from a gas of tiles �tilted squares�. The
evolution of the system �Monte Carlo steps� is given by the
following rules. With a probability Pi=1/ �L−1� a tile from
the gas hits site i �i=1, . . . ,L−1�. As a result of this hit, the
following effects can take place.

�a� The tile hits a local maximum of a cluster �a in Fig. 1�.
The tile is reflected.

�b� The tile hits a local minimum of a cluster �b in Fig. 1�.
The tile is adsorbed.

�c� The tile hits a cluster and the slope is positive �hi+1

�hi�hi−1� �c in Fig. 1�. The tile is reflected after triggering
the desorption of a layer of tiles from the segment �hj �hi
=hi+b, j= i+1, . . . , i+b−1�, i.e., hj→hj −2, j= i+1, . . . , i+b
−1. The layer contains b−1 tiles �this is an odd number�.
Similarly, if the slope is negative �hi+1�hi�hi−1�, the tile is
reflected after triggering the desorption of a layer of tiles
belonging to the segment �hj �hi=hi−b, j+ i−b+1, . . . , i−1�.

�d� The tile hits the right end of a cluster hj �h�i−c�
=h�i�=0 �j= i−c+1, . . . , i−1� and h�i+1�=0. The link �i , i
+1� contains a defect �d in Fig. 1�. The defect hops on the
link �c ,c+1� after triggering the desorption of a layer of tiles
�hj→hj −2, j= i−c+1, . . . , i−1� and the tile is adsorbed, pro-
ducing a new small cluster �hi−1=hi+1=0, hi=1� �see Fig. 3�.
If the defect is at the left end of a cluster, the rules are
similar, the defect hops to the right after peeling the cluster,
and a new small cluster appears at the end of the old one.

�e� The tile hits a site between two defects �hi−1=hi

=hi+1=0�. This is the case e in Fig. 1. The two defects anni-
hilate and in their place appears a small cluster �hi−1=hi+1
=0, hi=1�. See Fig. 4.

To sum up, the defects �D� hop nonlocally in a disordered
�not quenched� medium, which changes between successive

hops �local adsorption and nonlocal desorption take place in
the clusters�. During the hop, the defect peels the cluster and
therefore also changes the medium. The annihilation reaction
D+D→0 is local. If one starts the stochastic process with a
certain configuration �for example, only defects as in Fig.
3�a��, due to the annihilation process, for L even all the de-
fects disappear and in the stationary state one has only clus-
ters �RSOS configurations�. The properties of the stationary
states have been studied elsewhere �1,2�. In the case L odd,
in the stationary states one has one defect. In the next section
we are going to see how this defect hops and will observe
that the defect behaves like a random walker performing
Lévy flights. This will help us understand the annihilation
process D+D→0 described in Sec. IV. The rules described
above were obtained by using a representation of the
Temperley-Lieb algebra in a certain ideal �3–5� �see Appen-
dix A�. The finite-size scaling of the Hamiltonian eigenspec-
trum is known from conformal field theory �see Appendix
B�; therefore the physical properties of the model can be
traced back to conformal invariance.

III. THE RANDOM WALK OF A DEFECT

Before discussing the annihilation reaction of defects, it is
useful to understand how defects hop. The simplest way to
study the behavior of defects is to take the stationary states in
the case L odd when we have only a single defect. Although
there is a lot of information about these stationary states
coming from combinatorics �5,6� and Monte Carlo simula-
tions �5�, the results we present here are additional.

One asks what is the probability P�s� for a defect to hop,
in one Monte Carlo step, for a distance s �we assume L very
large�. We first see if, on physical grounds, one cannot guess
the result. Let us assume that the defect behaves like a ram-
don walker and that P�s� describes Lévy flights �7–10�. This
implies that for large values of s we have

� � � � � � � � �

� � �� � �

�
�

�
�

a

b

c

d

e

f

FIG. 2. The six configurations for L=4 �five sites�. In the sta-
tionary state only the RSOS configurations �e� and �f� occur.

23210 1

FIG. 3. The new profile after the tile d in Fig. 1 has hit the
surface at the right end of a cluster. The defect hops to the left end
of the cluster, peeling one layer, and a new small cluster appears at
the right of the old cluster.

� �� � � � � � � � � � � � � � �� � � �

2321 1

FIG. 4. The new profile after the tile e has hit the surface be-
tween two defects. The defects have disappeared and in their place
one gets a new small cluster.
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P�s� �
1

�s�1+� . �2�

If the random walker starts at a point x=0 �for example, in
the middle of the lattice�, at large values of t, the dispersion
is �10�

	x2
 � t2/�. �3�

In a conformally invariant model, one has no other scales but
the size of the system; space and time are on equal footing
and therefore one has to have �=1.

In Fig. 5 we show P�s� as obtained from Monte Carlo
simulations for systems of different sizes. One notices a data
collapse for a large domain of s. A fit to the data for the
largest lattice �L=4095� gives, for large s,

P�s� �
2.25

�s�2.06 , �4�

in agreement with what we expected.

IV. THE DENSITY OF DEFECTS AT LARGE TIMES

We are now going to study the number of defects Nd�t ,L�
as a function of time and lattice size, taking at t=0 the con-
figuration where the lattice is covered by defects only �as in
Fig. 2�a��. An interesting aspect of this study is the role of
conformal invariance. Since there are no other scales in the
system except L, we expect for large values of t and L

Nd�t,L� = f� t

L
 . �5�

In Fig. 6, we show Nd�t ,L� for various lattice sizes �L
odd�. One sees a nice data collapse except for very small

values of t /L where the convergence is slower. A similar �but
not identical� function is obtained for L even.

We first discuss the behavior of Nd for large values of t /L
�see Fig. 7�. A fit to the data gives �L odd�

Nd� t

L
 = A1

�o�e−�1
�o�t/L + A2

�o�e−�2
�o�t/L + ¯ , �6�

where

A1
�o� = 6.75, A2

�o� = 17.27,
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ln(|s|)
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L=2047

L=1023

L=511

ln[P(s)] = 0.81 - 2.06 ln(|s|)

FIG. 5. �Color online� Probability P�s� for a defect to hop a
distance s in units of the lattice spacing. Monte Carlo simulations
were done on systems of different sizes.

FIG. 6. �Color online� Number of defects Nd�t ,L� as a function
of t /L for several lattice sizes �L odd�. At t=0, Nd�t=0,L�=L. The
error bars are also shown. The fitted linear curve shows that the
density decreases as the inverse of time.
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FIG. 7. �Color online� Number of defects Nd as a function of t /L
as in Fig. 6 zoomed on the large time domain. The error bars, given
in Fig. 6, are not shown.
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�1
�o� = 8.21, �2

�o� = 26.48. �7�

We can now compare the data obtained from the fit with the
finite-size scaling spectrum of the Hamiltonian �see Appen-
dix B, Eqs. �B8� and �B9��:

�1
�o� =

3	�3

2
= 8.162 097 1 . . . ,

�2
�o� =

3	�3

2

10

3
= 27.206 99 . . . . �8�

No prediction can be made about A1
�o� or A2

�o� since they are
not universal; they depend on the initial conditions. Notice
that A2

�o��A1
�o�, as it should be, since the expansion should

diverge for short times where we expect

Nd �
L

t
. �9�

A similar fit, done for L even �the data are shown in Fig.
8�, gives

Nd� t

L
 = A1

�e�e−�1
�e�t/L + A2

�e�e−�2
�e�t/L + ¯ , �10�

with

A1
�e� = 2.83, A2

�e� = 6.93,

�1
�e� = 2.71, �2

�e� = 16.64. �11�

We can again use the predictions of conformal invariance
�see �B8� and �B9�� and get

�1
�e� =

3	�3

2

1

3
= 2.720 69 . . . ,

�2
�e� =

3	�3

2
2 = 16.324 194. . . �12�

to be compared with �11�.
In the small t /L domain we get for L even and odd


 =
Nd

L
�

0.322

t
. �13�

In order to find the correction term in �13�, we have com-
puted Ndt2 /L as shown in Fig. 9. We have obtained a straight
line from which we get


 =
0.322

t
+

0.334

t2 + ¯ . �14�

This last result is the same for L even and odd. Notice that
the correction term in �14� is not given by the scaling func-
tion �5�.

We have also computed the fluctuation of the density as a
function of time and got

	
2
 − 	

2

	

2 �
0.237

t1.00 . �15�

We would like to compare our results with known results
obtained for diffusion and annihilation reactions �A+A→0�
with Lévy flights �11–15�. In one dimension, for Lévy flights
given by Eq. �2�, one gets �12�


 ��
t−1/� for � � 1,

ln t

t
for � = 1,

t−1 for � � 1,

�16�

the critical dimension being dc=�.

1 2 3 4 5
t/L

-10

-5

0

5
ln

N
d

L= 4096

ln N
d

= 1.04 - 2.71 t/L

, 2048 , 1024, 512

FIG. 8. �Color online� Nd as a function of t /L for large times for
different lattice sizes �L even�. The error bars are of the same order
as in Fig. 6.
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FIG. 9. �Color online� Density of defects times t2 for short
times. A linear fit to the data obtained for the largest lattice �L
=4096� gives �14�.
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If one compares �16� for �=1, as obtained in Sec. III and
�14�, one notices the absence of the ln t correction. Such a
term, if present, could have been seen in our simulations
�one observes that, for large lattices, 
t converges to the
value 0.322 from above�. Logarithmic corrections can also
appear in a conformal field theory if one has Jordan cells
�16� but there are no Jordan cells in the Hamiltonian �A2�
given in Appendix A �17�. We believe that the discrepancy
between the results of our model and those obtained for the
reaction A+A→0 comes from the fact that the two models
have little in common.

V. CONCLUSIONS

We have presented an extension of the raise and peel
model taking into account defects. The main property of this
model is that conformal invariance is preserved. The model
mimics a system in which particles move in a disordered
unquenched medium doing Lévy flights and changing the
medium during the flights. Upon contact the defects annihi-
late. The properties of the system are simple and could be
guessed on simple grounds based on conformal invariance.
Conformal field theory enters in the description of the scal-
ing function Nd= f�t /L� �Nd is the number of defects, L the
size of the system, and t the time�.

The original raise and peel model �2� �this is the present
model with the defects absent� depends on a parameter w
which is the ratio of the desorption and adsorption rates. If
w=1, one has conformal invariance and the dynamic critical
exponent z=1. If one takes 0�w�1, in the disordered me-
dium one has fewer clusters and z varies continuously in the
interval 0�z�1. One can add defects to the model and re-
peat the exercise done in this paper for all values of w. In this
case one expects to find defects making Lévy flights with a
probability distribution function

P�s� �
1

s1+z . �17�
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APPENDIX A: THE CONNECTION
BETWEEN TEMPERLEY-LIEB STOCHASTIC

PROCESSES AND THE RAISE AND PEEL MODEL

We briefly review this connection; for details see �4,18�
and �5�.

Consider the Temperley-Lieb semigroup algebra G de-
fined by L−1 generators ej �j=1, . . . ,L−1� and the relations

ej
2 = ej, ejej±1ej = ej ,

ejek = ekej for �j − k� � 1, �A1�

and the Hamiltonian

H = �
j=1

L−1

�1 − ej� . �A2�

In the basis �wc� of the words of G �the regular representa-
tion of G�, H is a matrix satisfying Ha,b�0 for a�b and
�bHa,b=0. Such a matrix is an intensity matrix and defines a
Markov process in continuum time given by the master equa-
tion

d

dt
Pa�t� = − �

b

Ha,bPb�t� , �A3�

where Pa�t� is the �unnormalized� probability to find the sys-
tem in the state �a
 at time t, and the rate for the transition
�b
→ �a
 is given by −Ha,b, which is non-negative. The
Hamiltonian �A2� has an eigenvalue equal to zero. The cor-
responding left eigenvector 	0� is trivial; the right eigenvec-
tor �0
 gives the probabilities in the stationary state:

	0�H = 0, 	0� = �
a

	a� ,

H�0
 = 0, �0
 = �
a

Pa�a
, Pa = lim
t→�

Pa�t� . �A4�

H defined by �A2� gives a Markov process not only if it
acts in the vector space of the regular representation but also
if it acts in the vector space of a left ideal I because the
generators ej map the left ideal into the left ideal:

ejI = I . �A5�

An easy way to define the left ideal in which we are
interested and the action of the generators on this ideal is to
use the language of graphs.

The generators ej can be pictorially represented by

ej =

1 2 j−1 j j+1 j+2 L−1 L
�A6�

The elements of the ideal can be represented by links-
defects diagrams. They can be obtained in the following way
�see Fig. 10 for L=4�. Take L sites. If a site is not connected
to another one, draw a vertical arrow. Two sites can be con-
nected by a link. The links do not cross each other and the

� � �

� � �

� ��

� � � �

� � �

� � �

�

a

b

c f

e

d

FIG. 10. Six links-defects diagrams for L=4. The diagrams �a�–
�f� correspond to the RSOS �a�–�f� configurations of Fig. 2.
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arrows cannot cross the links. For a given L the number of
diagrams with m defects is

CL,m = � L

�L − m + 1

2
� � − � L

�L − m − 1

2
� � �A7�

and the total number of diagrams is

�
s=0

L/2

CL,2s+�Lmod2� = � L

�L

2
� � , �A8�

where �x� is the integer part of x.
The action of ej on a links-defects diagram is given by

placing the graph of ej underneath the first diagram, remov-
ing the closed loops and the intermediate dashed line. Next
one contracts the links in the composite picture. In Fig. 11
we show the action of e2 on the diagram of Fig. 10�b�.

The action of the Hamiltonian �A2� in the vector space
given in Fig. 10 is

H =�
3 0 0 0 0 0

− 1 2 − 1 0 0 0

− 1 − 1 2 − 1 0 0

− 1 0 − 1 2 0 0

0 − 1 0 − 1 1 − 2

0 0 0 0 − 1 2

� .

�A9�

Notice that H has a block triangular form. The stationary
state �0
=2 �e
+ �f
 contains only the two states without ar-
rows �defects� �e
 and �f
. The various transition rates can be
obtained from the matrix elements of H.

In Appendix B we are going to use a 2L-dimensional rep-
resentation of the L−1 generators ej and of the Hamiltonian
�A2�. In this representation, the Hamiltonian describes a
spin-1 /2 quantum chain. Where can we find the eigenvalues
of the left ideal �their number is given by �A8��, among the
2L eigenvalues of the quantum chain? We are going to give
an “almost correct” explanation. We take again the case L
=4 as an example. If on each of the four sites of the chain
one takes a spin-1 /2 representation of sl�2�, one finds the
representation with spin 0 �two times�, spin 1 �three times�,
and spin 2 �one time�. If for each representation containing
2s+1 states �s is the spin� one takes only the highest-weight
states, one gets precisely six states �the vertical arrows in
Fig. 10 corresponding to up spins�.

We give now the correspondence between the links-
defects diagrams and the RSOS configurations considered in
Sec. II. For a links-defects diagram with L sites �i
=1,2 , . . . ,L�, take the dual lattice with L+1 sites �on each
bond between the sites i and i+1 of the links-defects diagram
you take the site i on the dual lattice�. On the dual lattice we
have the sites j �j=0,1 , . . . ,L�. An arrow �defect� on the site
i on the links-defects diagram stays unchanged on the dual
lattice �it is on the bonds of the dual lattice�. For the links,
one proceeds as follows. One takes a site on the dual lattice
and a vertical line on this site. One counts how many links
are cut by the vertical line and one takes a vertex with a
height h equal to the number of intersections. Figures 2 and
10 illustrate the rules.

APPENDIX B: THE FINITE-SIZE SCALING LIMIT
OF THE HAMILTONIAN EIGENSPECTRUM: RESULTS

FROM CONFORMAL FIELD THEORY

We are going to give a brief description of the time evo-
lution operator of the stochastic model described in Sec. II.
Firstly we consider the spin-1

2 quantum chain defined by the
Hamiltonian

H = �
i=1

L−1

�1 − ei� , �B1�

where

ei =
1

2
��i

x�i+1
x + �i

y�i+1
y −

1

2
�i

z�i+1
z + i

�3

2
��i

z − �i+1
z � ,

�B2�

and �x,�y,�z are Pauli matrices. The Hamiltonian �B1� com-
mutes with

Sz =
1

2�
i=1

L

�i
z. �B3�

In the continuous time limit, the evolution of the system is
given by a Hamiltonian He which corresponds to the sub-
space of highest weight Uq(Sl�2�) representations �q
=exp i	 /3� �19�. There are � L

�L/2� � states in these two sectors
��x� is the integer part of x�. If we denote by Er �r
=0,1 , . . . � the energy levels in nondecreasing order, E0=0
�E1�E2�¯, the partition function giving the finite-size
scaling limit of the spectrum of He is defined as follows:

Z�q� = lim
L→�

ZL�q� = lim
L→�

�
n

qLEn/	vs, �B4�

where vs=3�3/2. One can show �20� that Z�q� has the ex-
pression

Z�q� = �
s

�s�q� . �B5�

Here s is the spin, taking the values s=0,1 ,2 , . . . for L even
and s= 1

2 , 3
2 , 5

2 for L odd, and

� � ��

� �� � � � �

e2|b> |c>

FIG. 11. Action of e2 on the diagram b of Fig. 10.
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�s�q� = qs�1 − q2s+1��
n=1

�

�1 − qn�−1, �B6�

where

s =
s�2s − 1�

3
. �B7�

Moreover, for large lattice sizes, the energies are �see �B4�
and �B6��

E =
3	�3

2L
�s + k� , �B8�

where k is an integer.

The Hamiltonian He has a block diagonal form. The states
with no defects �L even� and those with one defect �L odd�
are in one block. This is the s=0 �s= 1

2
� part of �B5�. The

states with defects �L even� and more than one defect �L odd�
correspond to higher spins. In Sec. III we found that the
following values of s were useful:

1 =
1

3
, 2 = 2 �L even� ,

3/2 = 1, 5/2 =
10

3
�L odd� . �B9�
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